PHOTOCHEMICAL POLAR ADDITION OF TRIALKYLBORANES

N. MIYAMOTO,* S. ISIYAMA, K. UTIMOTO and H. **NOZAKI Department** of Industrial Chemistry, Kybto University, Kybto, Japan

(Received in Japan 18 January 1973; Received in the UK for publication 26 March 1973)

Abstract-ccis-2-Alkylcyclohexanols are obtained stereoselectively upon irradiation of a **mixture of** cyclohexene and the corresponding trialkylborane in the presence of p -xylene as a sensitizer and upon the successive oxidation of the photolysate with alkaline H_2O_2 . The similar reaction of 1-ethylcyclohexene yields 2,2-dialkylcyclohexanols. Cycloheptene also reacts with the boranes to afford cis-2alkylcycloheptanols. These reactions are **explained by assuming the highly** strained rrans-cyclohexene or -heptene to be the reactive species. Photochemically produced *trans-cyclo-oct-2-enone* and cis.trans-cycle-octa-2,7-dienone react thermally with the bora e to give 3-alkylcyclo-octanone and cis-7-alkylcyclo-act-2-enone, respectively. Photoreactions of acridine with the boranes result in reductive alkylation. affording 9-alkylacridans in fairly good yields.

Photochemical polar addition reactions have been recorded with such substrates as cycloalkenes,¹ conjugated cycloalkenones,² dienones³ and benzopyridines4 dissolved in protic media. The present report describes a novel photochemical addition of trialkylboranes to these substrates, providing a new synthesis of difficulty accessible compounds.?

Photoreaction of cyclohexene or -heptene with triokylburanes. Recent studies' have shown that photosensitized excitation of cyclohexene or cycloheptene in protic solvents results in protonation of the olefin in the Markovnikov sense. The proposed reactive species is a highly strained, nucleophilic trans-cyclohexene or -cycloheptene. We wanted to examine the behaviour of this species as a strong base towards a trialkylborane.

A solution of cyclohexene and a trialkylborane **(la-c)** dissolved in benzene-p-xylene was irradiated^{\pm} and the photolysate was oxidized with alkaline H_2O_2 . Work-up gave the corresponding cis -2-alkylcyclohexanols (6 p) selectively, as shown in Table 1. The same reaction of l-ethylcyclohexene with the boranes 1a and 1b gave 2,2-dialkyl**cyclohexanols (6aq and 6bq),** which were transformed into the corresponding 2,2-dialkylcyclohexanones **(9aq** and 9b4). Cycloheptene also

reacted with the borane **la** and **lb** under the same irradiation conditions to afford cis-2-alkylcycloheptanols **(6ap' and 6bp')** selectively. The *cis*-2alkylcyclohexanols (6p) were identified by comparison with the authentic samples synthesized following Scheme 1. Hydroboration⁸ of 2 afforded frans-2-alkylcyclohexanols (7), which were oxidized to cyclohexanones (8). Hydride reduction of each ketone gave rise to a *cis-tram* mixture of the corresponding 2-alkylcyclohexanol. GLC analyses indicated that each photochemically produced alcohol was homogeneous and had the cis-configuration. The cyclohexanols **6aq** and **6bq** were oxidized to the corresponding cyclohexanones 9, which were identical with those elaborately synthesized *via* alkylation§ of 2-ethylcyclohexanone. 2-Alkylcycloheptanols were similarly prepared.

Incidentally, asymmetric photoreaction of cyclohexene has been brought about by means of di-nbutylborinic (lS)-menthoxyacetic anhydride **(lo),** which was readily obtained from **lb** and (IS) menthoxyacetic acid.¹⁰ Irradiation of a mixture of cyclohexene and **10** and subsequent oxidation, furnished an optically active alcohol **(6bp,** $[\alpha]_0^{20^\circ}$ -6.2° , $c = 0.26$, EtOH, 15% e.e.) in 12% yield. The $\sigma = 10 - 0.20$, EtOH, 1970 0.0.) in 1270 yield. The σ enamomene excess was determined by the **N**
mathod comploying trial? (text-butylhydroxymethod employing tris[3-(tert-butylhydroxy-
methylene)-d-camphorato]europium(III) $(11)^{11}$ **(Fig 1).**

Systems involving either tricyclohexyl- and triisopropylborane or cyclopentene, cycle-octene and isopropylborane or cyclopentene, cyclo-octene and cyclododecene as reaction components did not react similarly. This is reminiscent of the photochemistry of cyclo-olefins¹ in protic media; very probably *trans-cyclohexene* (3) or -cycloheptene is the common reactive species, which captures¶
the strong Lewis acid 1 to give a zwitterion 4.

^{*}Part of this work has been published in a preliminary form.⁵

 \ddagger Light was consumed by benzene or p-xylene, since **the borane** and cycloalkenes do not absorb light of excitation wave length (mainly 254 nm). $\frac{1}{2}$ changed by the alkylation of solid $\frac{1}{2}$.

 $\frac{1}{2}$ in the vast attained by the alkylation of some 2-formyl 6-ethylcyclohexanone according to the method of Hauser
et al .⁹ lIThe driving force for this acid-base reaction is

 $\frac{1}{2}$ as a strain-relief of the strain-relief of the highest order of ascribed to strain-relief on the highly twisted olefinic bond occurring as in protonation to the photochemically-produced 3.

Compound	R	R'	yield $(\%)^a$	$b.p.$ (γ mm)
6ap ^b	ethyl	н	86	$95 - 100/20$
$6bp^c$	n-butyl	н	80	120-123/23
бср	3-methoxypropyl	н	55	$100 - 103/5.0$
бад	ethyl	ethyl	71	135-140/20
6ba	n-butyl	ethyl	68	138-145/20
$6ap'^d$	ethyl	н	10	$105 - 110/5.0$
$6bp'^{d}$	n-butyl	н	18	$113 - 120/5.0$

Table 1. cis-2-Alkylcycloalkanols

"Based on the borane 1. "See ref. 6. "See ref. 7. "These refer to cyclo**heptene** adducts.

 $R = (a) Et, (b) n-Bu, (c) 3-methoxypropyl, (d) i-Pr, (e) cyclohexyl.$ $R' = (p) H$, (q) Et, (r) *n*-Bu, (s) 3-methoxypropyl.

SCHEME 1

Migration of an alkyl anion occurs from boron to the electron-deficient carbon by the shortest path to result in the observed cis addition (Scheme 1).

This mechanism is supported by the observed stereospecific cis addition of the boranes **1,** and the regiospecific addition to the I-ethylcyclohexene,

and by the successful asymmetric synthesis of the alcohol 6bp. The free radical mechanism is excluded. The reaction provides a new route to cis-2-alkylcyclohexanols, 2-alkylcyclohexanones, and 2,2-dialkylcyclohexanones.

Reaction of trialkylboranes withphotochemically produced trans-cyclo-act-Zenone *and* cis,trans*cycle-octa-2,7-dienone.* The fate of photochemically produced *trans-cyclo-oct-2-enone* $(14)^2$ and $cis, trans-cyclo-octa-2,7-dienone$ $(19)³$ is well documented.

An ethereal solution of *trans-cyclo-oct-2-enone* was produced by irradiating the *cis* isomer (12) at -78° .² The light source was turned off and the borane la was added. After warming up to room temperature, the resulting mixture was hydrolysed to give 3-ethylcyclo-octanone $(13a, 70\%^*)$. A simi-

^{*}All yields given hereafter are **based** on the unsaturated based on the unit of the substrate of the saturated substrates initially employed

Fig 1. NMR spectra of (a) optically active cis-2-butylcyclohexanol obtained photochemically **(6bp, O-090** mmoI) in CCl, (0.40 ml) and (b) the alcohol $(6bp, 0.081 \text{ mmol})$ in CCl₄ (0.40 ml) containing the shift reagent $(11, 0.016)$ mmol).

lar reaction with the borane **Id** furnished 3-isopropylcyclo-octanone $(13d, 83%)$. These products were also obtained by the known addition of the borane to the enone 12 induced photochemically¹² or by oxygen catalysis.¹³ When an ethereal solution of the enone 12 and the borane **la** or **lb was** allowed to stand in the dark, the adducts were produced in smaller yields; 5.0% of 13a and 8.4% of **13d.** An ethereal solution of cis,cis-cyclo-octa-2,7-dienone (15) was irradiated at -78° and the resulting mixture of 15 and cis, trans-dienone 19 was treated with the borane la or ld similarly to afford 7-ethylcyclo-

*The homogeneity of the alcohols 18~1 and **18d** was established by **GLC** analyses on a capillary column **(BDS 45** m, **I IO').**

18

act-2-enone **(16a,** 15%) and 7-isopropylcyclo-oct-2-enone (16d, 23%), respectively. Irradiation of an ethereal solution of the dienone 15 and the borane la or Id followed by hydrolysis afforded the enone **16a** or 16d, respectively, as a single product. On the other hand, oxygen-initiated reaction of the dienone **15** with either the borane la or Id dissolved in THF-H,O gave a mixture of the enone **(16a** or **16d)** and the double adduct **(17a** or **17d).** The saturated ketones 17 were found to be *trans-3,7* dialkylcyclo-octanones on the basis that the hydride-reduction yielded a single reduction product 18* in each case.

Meanwhile, an ethereal solution of the dienone **15** and the borane la or Id was kept in the dark to result in the complete recovery of the dienone 15.

The observed reactivity of the pre-irradiated enone 12 and dienone 15 is attributed to such reactive species as trans-cycle-act-2-enone (14) and cis,rruns-cycto-octa-2,7-dienone (19), which are both key intermediates **in** the protic solvent incorporation.2*3 The attack of the strained enone and dienone system by the Lewis acid **1** would be followed by the migration of the alkyt anion to the electron-deficient β -carbon.

Photochemical and thermal reaction of acridine with trialkylboranes. Finally, the photoreaction of acridine and its derivatives⁴ with trialkylboranes has been studied. Irradiation of a mixture of acridine and the borane la dissolved in benzene or n-hexane gave 9-ethylacridan4 (2Oa, 72%) and 9-ethylacridine4 **@a, 64%)** besides 9,9'-biacridan $(24, 3.0\%)$ (Scheme 2). The similar reaction with the borane **lb, ld** or **le** yielded 9-n-butylacridan4 (20b, 65%), 9-n-butylacridine4 (23b, 8.0%) and 24 (3.0%) ; 9-isopropylacridan (20d, 86%), 9-isopropylacridine $(23d, 3.0\%)$ and 24 (4.0%) ; 9-cyclohexyl- \arctan^{14} (20e, 90%), 9-cyclohexylacridine¹⁴ (23e, 5 \cdot 0%) and 24 (2 \cdot 0%).

Allowing the mixture of acridine and the borane **lb** to stand at room temperature gave 9-alkylated acridan 20b (10%). Thus the addition is definitely accelerated by irradiation. The enhanced reactivity of acridine upon irradiation is ascribed to the

17

R

19

SCHEME 2

increased basicity* of the excited state, In sharp contrast to the photochemical reaction of cyctohexene or cycloheptene, the thermal reaction of acridine with the boranes having secondary alkyl groups such as **Id** or **le** proceeded much more readily than those with primary alkyl substituents such as la or **lb** to produce high yields of 9-alkylated acridans such as 2Ud (90%) and 20e (75%). Thus the boranes are convenient meanst for introducing an α -branched alkyl group at the 9-position of acridine either thermally or photochemically. Irradiation of 9-alkylacridines with the appropriate borane gives rise to 9,9-dialkylated acridans. This is exemplified by the photoreaction of 9-ethylacridine with the borane la giving 9,9 diethylacridan4 (22a, 72%). Similarly, the borane la with 9-methylacridine4 produced 9-ethyl-9 methylacridan4 **(21a,** 75%) photochemically.

EXPERIMENTAL

AU m.ps and b.ps are uncorrected. IR spectra were obtained on **a Shimazu IR-27-G** spectrometer in liquid film unless otherwise stated. NMR spectra were taken with a JEOL C-60-H spectrometer (60 MHz) with Ccl, as a solvent and chemical shifts are recorded in δ values relative to TMS as an internal standard. NMR data are given in the order of multiplicity ($s = singlet$, $d = doublet$, $t =$ triplet and $m =$ unresolved multiplet), integration and assignment. UV spectra were taken in EtOH on a Hitachi EPS-2 recording spectrometer. Optical rotations were measured in EtOH solutions with a 5 cm celf. Column chromatography was carried out on Mallinckrodt silicic acid (100 mesh). Plates of silica get G were used for TLC and the spots were visualized with iodine vapour.

Irradiation of a benzene solution of cycloalkene, trialkylborane and p-xylene

A soln of cycloalkcne (2 or 2',\$ I5 mmol) and the

tOther heteroaromatics such as quinoline, isoquine tine or indole fail to react with the borane **1** either photochemically or thermally. emically or thermally.
*The sign ' refers to the seven-membered ring system.

#After hydroboration, the reaction mixture was oxigatter hydrocotation, the reaction mixture was oxidently dized with alkaline H_2O_2 to give 3-methoxypropan-1-01¹⁸ (83%) , T-methoxy-propan-2-or (13%) and propan-1- (2.0%) . The crude mixture of TC (63%) and the successive 2-propyl)borane (15%) was subjected to the successive photoreaction, since the boranes having secondary alkyls failed to react with cyclohexene as shown in the dis-
cussion part.

borane (I, 5.0 mmol) dissolved in benzene (70 ml) containing p -xylene (5.0 ml) was placed in a quartz vessel and irradiated externally by means of 200 W high pressure mercury arc under nitrogen atmosphere at room temp for 48 h. The progress of the reaction was followed by GLC analyses (HVSG IO%, 2 m, 130") of aliquots after oxidation with alkaline $(3N NaOH) H₂O₂$. The reaction mixture was treated with alkaline H_2O_2 and the resulting solution was extracted twice with ether, The combined extracts were washed with brine and then dried (N&SO,). The solvent was evaporated and the residue was chromatographed over silica gel. Elution with benzene-ether $(1:1)$ gave the crude alcohol 6 or 6', which was distilled to afford analytically pure material.

The photoreaction of cyclohexene with tri(3-methoxypropyl)borane (lc) was performed in the following manner, To 3-methoxypropene $(1.1 g, 15 mmol)$ in THF $(5.0 ml)$ was added with stirring BH₃ (5.0 mmol) in THF (3.5 ml) at 0° under nitrogen. The soln was stirred at room temp for 3 h. After removal of **THF** *in uacuo, the* crude mixture§ of 1c (83%) and tri(1-methoxy-2-propyl)borane (15%) was added to cyclohexene (l-2 g, 15 mmol) in benzene (70 ml) containing p-xylene (5.0 ml). Irradiation and work-up gave 6cp. The results are given in Table 1.

irradiation of a benzene solution of cyciohexene, di-nbutylborinic (lS)-menthoxyacetic anhydride (10) *and pxylene*

To the borane **(lb,** 9 10 mg, 5.0 mmol) was added slowly with stirring $(1S)$ -menthoxyacetic acid¹⁸ at room temp under nitrogen according to the method reported by Meerwein¹⁰ for the preparation of diethylborinic acetic anhydride. Spontaneous evolution of n-butane under exothermic reaction was observed during the addition of the acid. The resulting mixture was heated at 70" for 1 h. The crude borinic anhydride **10 was** immediately added to a benzene (70 ml) soln of cyclohexene $(1.2 \text{ g},$ 15 mmol) and p -xylene (5.0 ml) in a quartz vessel under nitrogen. The irradiation for 72 h afforded the **optically** active alcohol **(6bp,** 12% based on lb used), which was purified by preparative GLC (Apiezon 30%, 1 m, 150°). The enantiomeric excess of **6bp** is given above.

independent syntheses of cis-2-alkylcycloalkanols (6p, 6~'). (a) *2-Aikylcycloalkanones (8,8')*

The trans-alcohols 7 and 7' prepared *tria* hydroboration of the olefins 2 and 2' and the successive treatment with alkaline H_2O_2 were oxidized with Jones reagent. Distillation afforded the corresponding ketones 8 and 8'. The ketone 8s was prepared as follows. A soln of cyclohexene $(3.0 g, 31 mmol)$ in dry ether $(5.0 ml)$ was added dropwise to the Grignard reagent prepared from 3-methoxypropyl-1-bromide¹⁶ and Mg (74 mg, 31 mmol) activated with a small amount of iodine in dry ether (10 ml) in the course of 30 min. After the soln was stirred

^{*}Benzopyridines show marked enhancement of the basicity in the first excited singlet state.¹⁵

under reflux for 3 h, the reaction mixture was decomposed with an NH.Cl. Ether extraction and drving (Na_sSO_s) followed by concentration afforded 1-(3-methoxypropyl) cyclohexan-l-o1 as a light yellow oil. The mixture of the crude alcohol and H₃PO₄ (1.0 ml) was heated at 130° for 2 h. Extraction with ether, drying $(Na₂SO₄)$ and concentration in vacuo followed by distillation afforded 1-(3methoxypropyl)cyclohex-1-ene (2s, 2.9 g, 62% based on cyclohexanone), **b.p. 70-73'120** mm, which was purified by preparative GLC (HVSG 30%, 2 m, 85°).

2-(3-methoxypropyl)cyclohexanone (8s) was prepared via hydroboration of the olefht 2s and the subsequent oxidation of the alcohol 7s as shown above. The results are **given** in the order of the kind of the ketone, b.p. ("/mm) and yield (%). *4,1s* **70-75122, 83; 8r,20** 110-l IS/ 25, 75; 8s, 75-7715~0, 87; *4',91* **90-93/22, 90;** 8r',** 135-140/7·0, 74.

(b) *Hydride-reduction of 2-alkyicycloalkanones 8* and 8'. The ketone (8 or 8', 10 mmol) dissolved in dry ether (5.0 ml) was added slowly with stirring to LAH (110 mg, 3-O mmol) in dry ether (5-O ml). After the reaction mixture was decomposed with aq $Na₂SO₄$. The ether layer was dried (Na₂SO₄), concentrated in vacuo and distilled to give the isomeric mixture of the trans-alcohol (7 or 7') and cis-one **(6p or dp'). The** two isomers were separated on a capillary column (BDS $45 \text{ m} \times 0.50 \text{ mm}$) i.d., 100°), where the *trans* isomer 7 or 7' was identified by comparison of the retention time with the one of **specimen** prepared oia hydroboration of the olefin 2 or 2'. The results are given in the order of the kind of the alcohols, the *cisltrans ratio* **and** yield (%). 6ap and **7q,** 2/3, 85; **6bp and** *7r, 2/3,87; 6cp* **and 7a, 2/3,91; 6ap'** and **7q', 415, 78;** 6bp' and 7r', 4/5, 82. Thus the alcohol formed in every photoreaction was ascertained to be cis.

Oxidation of the photoproducts 6ag and 6bg to the *ketones* **9aq** *and 9bq. The* oxidation of **4aq and 6bq** afforded the corresponding ketones 9aq²³ (b.p. 95-100^o/ 20 mm, 73%) and 9bq²³ (123-125/20, 82).

Independent syntheses of the ketones **9aq** *and 9bq. The* method was based on Hauser et *ale* and work-up Followed by distillation gave the ketones (9aq,²³ 48% based on sodio formyl ketone), 9bq²³ (63%).

Reaction of cycle-act-Zenone 12 with the borane 1 under oarious conditions

Condition A: Thermal reaction of the photochemically produced trans-enone 14 *with the borane 1. The trans*enone I4 dissolved in ether was photochemically pro duced according to the method reported by Noyori.* An ethereal soln (20 ml) of cis-cyclo-oct-2-enone²⁴ (12, 500 mg, 4 \cdot 0 mmol, $\lambda_{max} = 310$ nm, $\log \epsilon = 1.90$) was placed in a Pyrex vessel and irradiated externally by means of 200 W high pressure mercury arc under nitro gen at -78° for 15 min. After the light source was turned off, the borane **(1,** 4-4 mmol) was immediately added to the photolysate. Upon warming up to room temp, the resulting soln was treated with trimethylamine oxide²⁵ to decompose the excess of the borane 1. Hydrolysis followed by usual work-up gave 3-alkylcyclo-octanone (13) along with unchanged enone 12.

Table 2. Physical **properties** of new compounds in cycloalkene reaction

No	IR (cm ⁻¹)	$NMR(\delta,ppm)$		
6cp	3400, 1010	$2.20(s, 1H, -OH), 2.53(t, 2H, -CH_2OCH_3),$ $3.20(s, 3H, -OCH3)$, $3.60(m, 1H, -CHOH-)$		
6ag	3400, 1020	$1.90(s, 1H, -OH), 3.40(m, 1H, -CHOH-)$		
6ba	3400, 1020	$1.92(s, 1H, -OH), 3.50(m, 1H, -CHOH-)$		
6ap'	3400, 1015	$2.10(s, 1H, -OH), 3.48(m, 1H, -CHOH-)$		
6bp'	3400, 1015	$1.95(s, 1H, -OH), 3.33(m, 1H, -CHOH-)$		
2s	1110	$2.50(t, 2H, -CH2OCH3), 3.21(s, 3H, -OCH3),$ $5.35(m, 1H,$ vinvlic)		
88	1710, 1110	$2.20 - 2.50(m, 2H, -CH, -C=0)$, $2.51(t, 2H,$ $-CH2OCH3$), 3.21(s, 3H, $-OCH3$), 3.30 (t, 1H, methine)		

Table 3. Reaction **of the** enone 12 or the dienone **15 with the borane 1**

The enonc (12,90-95%) was recovered on the basis of 12 used.

The choic (12, 70–7370) was recovered on the basis of 12 used.
The dience (15 TC 050) was recovered on the basis of 15 used.

The GLC analyses (HVSG 20%, 2m, 1800) revealed the complete recovery of **15.**

dB.p. of 17a.

CB.p. of **17d.**

No	IR $(cm-1)$	$NMR(\delta,ppm)$		
13a	1700	0.98(t, 3H, -CH ₃), 2.10-2.35(m, 4H, CH ₂ adjacent to C=O)		
13d	1700	0.95(d, 6H, - CH ₃), 2.10-2.33(m, 4H, CH ₂ adjacent to C=O)		
16a	1660	$1.00(t, 3H, -CH3), 2.52-2.57(m, 4H, CH2 adjacent to sp2$ carbon), $5.93-6.50(m, 2H, vinvlic)$		
16d	1660	$0.99(d, 6H, -CH_3), 2.51-2.58(m, 4H, CH2 adjacent to sp2)$ carbon), $5.93-6.50(m, 2H, vinvlic)$		
17a	1710	$0.99(t, 6H, -CH_3), 2.11-2.58(m, 4H, CH_2)$ adjacent to C=O)		
17d	1720	0.95(d, 12H, -CH ₃), 2.10-2.40(<i>m</i> . 4H, CH ₂ adjacent to C=O)		

Table 4. Physical properties of new compounds in cycle-octenone and -octadienone

Table 5. Elemental analyses of all new compounds

		Required, %			Found, $%$
No	Formula	C	H	C	н
бср	$C_{10}H_{20}O_2$	69.7	$11 - 7$	69.3	11-7
бад	$\mathbf{C}_{\cdot\mathbf{n}}\mathbf{H}_{\cdot\mathbf{n}}\mathbf{O}$	76.9	12.9	76.6	$12 \cdot 7$
6ba	$C_{12}H_{24}O$	78.2	$13 \cdot 1$	78.5	13.3
бар'	$C_a H_a O$	76 0	12 R	76-3	12.4
6bp′	$C_{11}H_{22}O$	77.6	13.6	77.2	13.2
2s	$C_{10}H_{18}O$	77.9	11.8	77.5	11.5
8s	$C_{10}H_{18}O_2$	70 S	10.7	70.9	10.8
13a	$C_{10}H_{18}O$	77.9	11.8	77.5	11-6
13d	$C_{11}H_{20}O$	78.5	$12 - 0$	78.9	12.3
16a	$\mathrm{C_{10}H_{16}O}$	78.9	$10-6$	79.2	$10-6$
16d	$C_{11}H_{18}O$	79 S	11-0	79.2	110
17a	$C_{12}H_{22}O$	79-1	$12 - 2$	79 4	12.0
17d	$C_{14}H_{26}O$	80.0	12.5	79.6	12.4
18a	$C_{12}H_{24}O$	78-2	$13 - 1$	78 4	12.9
18d	$C_{14}H_{26}O$	80.0	12.5	79.S	$12 - 4$
20d	$\mathrm{C_{14}H_{17}N^{a}}$	86-1	7.7	85.9	7.5
23d	$C_{16}H_{15}N^b$	86.8	68	87 O	6.9

[&]quot;Required: N, 6.3 . Found: N, 6.0% . b Required: N, 6.3 . Found: N, 5.8%.

Condition B: lrrodiatiun of an ethereal solution of the enone **12** *with the borune* **1.** A **soln** of the **enone (12, 500 mg, 4.0** mmol) and the borane (1, 4.4 mmol) in ether *(20* ml) was placed in a Pyrex vessel and irradiated externally by means of 200 W high pressure mercury arc under nitrogen for 2 h. Work-up as above afforded the ketone 13. *Condition C: oxygen-induced reaction of the enone* **12**

with the borane **1. The** method was based **on one** reported by Brown *et al. In* **The** enone (12, 500 mg, 4-Ommol) in UY DIUWILLE (II. THE CHURE (IA, JUVING, TV HINDI) IN H_{H} (10 mm) was treated with H_2O (0.90 mm) and then with the borane (1, 4.4 mmol) under nitrogen. Then air was passed into the flask at a rate of $1-5$ ml/min through a syringe needle placed through the rubber septum cap to a point just above the reaction mixture. The similar work-up as above gave the ketone 13. *Condition D: Dark reaction of the enone* **12** wirh the

Condition D. Dark reaction of the enone 12 with the borane 1 under nitrogen. An ethereal soln (20 ml) of the enone (12, 500 mg, 4.0 mmol) and the borane $(1, 4.4)$ mmol) was allowed to stand in the dark under nitrogen at room temp for 24 h. om temp for 24 n.
_{The r}eaction of city-cyclo-octa-2,7dienonezh (15, ^a) (15, ^{a)}

A me reaction of cis, cis-cyclo-octa-2, *l*-dienone² (15 $\lambda_{\text{max}} = 353 \text{ nm}$, $\log \epsilon = 1.79$) with the borane 1 was performed under the same conditions for enone 12. The results are summarized in Table 3.

Hydride-reduction of the ketone **17**

The ketone **(17, 3-O** mmol) was reduced to the alcohol 18 with LAH $(34 \text{ mg}, 0.90 \text{ mmol})$. 18a: b.p. 103-110% 0.050 mm, 92%, IR 3400 and 1025 cm⁻¹, NMR δ 0.99 (*t*, 6H, $-CH_3$), 2.01 (s, 1H, $-OH$) and 3.43 ppm (m, 1H, -CHOH-). **l&l:** b.p. 122-l 30"/0.010 mm, 85%, IR 3400 and *1023* cm-*, NMR 60~% *(d,* 12H, -CHs), 2.00 $(s, 1H, -OH)$ and 3.40 ppm $(m, 1H, -CHOH)$.

The homogeneity of each alcohol 18 was established by GLC analyses on a capillary column (BDS 45 m, 110°).

Photochemical and thermal reaction of acridine and its 9-alkyluted deriuotiues with the borane 1

A soln of acridine or its derivatives (5-O mmol) and the borane **(1,** 5.1 nunol) dissolved in benzene or hexane (70 ml) was placed in a Pyrex vessel and irradiated externally by means of 200 W high **pressure mercury arc** under nitrogen atmosphere at room temp for 48 h. The progress of the reaction was followed by TLC analyses of aliquots. After a ppt of biacridan was filtered off, the filtrate was treated with alkaline H_2O_2 to decompose the excess of the borane 1. Extraction with ether, drying (Na₂SO₄) and concentration *in vacuo* followed by column chromatography on silica gel (benzene elution) afforded the aIkylated acridan together with the alkylated acridine.

A benzene or hexane solution (70 ml) of acridine (5.0 mmol) and the borane **(1, 5-l** mmol) was allowed to stand in the dark under nitrogen at room temp for 72 h. Work-up as above followed by column chromatography yielded the alkylated acridan as well as the recovered acridine. The physical properties of the hitherto-unknown compounds are shown as follows. $20d$: m.p. 156-157 $^{\circ}$ (from hexane), IR (KBr) 3370, 1605 and 750 cm-', NMR SO.75 *(d,* 6H, -CH,), 3.70 *(d,* 1 H, C(9)H). 590 (s, IH, (0.017) (ii, 011, -0.113), 3.70 (ii, 111, $O(2)11$), 3.70 (s, 111, -0.01 , 6.60, 7.10 ppm (m, 8H, aromatic). 23d: $-MH$ —) and 6.60-7.10 ppm (m, 8H, aromatic). 23d: m.p. 65–66° (from hexane), IR (KBr) 1605 and 750 cm⁻¹. NMR δ 1.38 (d, 6H, -CH₃), 5.50 (m, 1H, methine) and $7.10-8.20$ ppm (m, 8H, aromatic).

REFERENCES

- **'For** a recent review, see J. A. Marshall, *Science,* **170, 137 (1970)** 2oH. Nozaki, M. Kurita and R. Noyori, *Tetrahedron*
- *Letters,* 2025 (1968); "R. **Noyori,** A. Watanh and Letters, 2025 (1968); ⁸R. Noyori, A. Watanabe and M. Katô, *Tetrahedron Letters*, 5443 (1968)
- ³⁴R. Noyori and M. Katô, Tetrahedron Letters, 5075 *(1968)*; ⁸J. K. Crandall and R. P. Haseltine, *J. Amer. Chem. Soc.* 90, 6251 (1968) μ_{max} . Nov. μ_{max} (1908)
- **R. Noyon, M. Kato, M. 1**
- sN. Miyamoto, S. Isiyama, K. Utimoto and H. Nozaki, Tetrahedron Letters 4579 (197 1)
- 6W. Hiickel and S. K. Gupte, *Liebigs Ann. 685, 105 (1965)*
- *'G.* Vavan and G. Guedon, *Bull. Sot. Chim. Fr. 47,901 (1930)*
- ⁸G. Zweifel and H. C. Brown, Organic Reactions, Vol.
- 13, John Wiley & Sons, Inc., New York, London (1963) "S. Boatman, T. M. Harris and C. R. Hauser, *1. Amer.*
- *Chem. Sec. 87,82 (1965)*
- IoH. Meerwein and H. Sonke, *J. Prukf.* Chem. 147,251 (1963)
- 11^aG. M. Whitesides and D. W. Lewis, J. Am. Chem. *Sot. 92, 6979 (1970);* *H. Nozaki, K. Yoshino, K. Oshima and Y. Yamamoto, *Bull. Chem. Soc. Japan* 45, *3495 (1972)*
- lzH. C. Brown and G. W. Kabalka, J. *Am. Chem. Sot. 92,710(1970)*
- *131dem, ibid. 92,7* 14 (*1970)*
- IrE. Hayashi, S. Ohsumi and T. Maeda, *Yukugaku Zasshi, 79,967 (1959)*
- rsoG. Jackson and G. Porter, *Proc. Roy. Sot. AXO, 13 (1961);* bM. Mataga, Y. Kaifu and M. Koizumi, *Bull. Chem. Sot. Japan 29,373 (1956)*
- ¹⁶L. 1. Smith and J. A. Sprung, *J. Am. Chem. Soc.* 65, l276(1943)
- "W. Reeve and A. Sadle, *Ibid. 72, I25* 1 *(1950)*
- ¹⁸H. G. Rule and H. Todd, *J. Chem. Soc.* 1929 (1931)
- '*J. E. Nickels and W. Heintzelman, *J. Org. Chem.* **15, I** 142 (1950)
- aoJ. Colonge, J. Dreux and M. Thiers, *Bull. Sot. Chim. France* 450 (1959)
- slI. Elphimoff and B. Tchoubar, C. *R. Acud Sci, Paris* 233,799(1951)
- 22V. A. Barkhash, G. P. Smironova, A. T. Prudchenko and I. V. Machinskaya, *Zh. Obshch. Khim. 33, 2202 (1963)*
- 43P. Nedenskov, W. Taob and D. Ginsburg, Acta *Chem. Scund. 12,1405* (1958)
- ²⁴E. W. Garbisch, Jr., *J. Org. Chem.* 30, 2109 (1965)
- 2sR. Koster and Y. Morita *Liebigs Ann. 704,70* (*1967)*